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Diagnostic screening tests are used to predict an individual’s graduated 

disease status which is measured on an ordered scale assessing disease 

progression (severity of illness). Maximizing the predictive accuracy of 

the diagnostic or screening test is paramount to correctly identifying an 

individual’s actual score along the ordered continuum. The present study 

compares two approaches for mapping a statistical model to a diagnostic 

index in order to make accurate outcome predictions for individuals. The 

application involves a dataset composed of multiple biomedical voice 

measurements for 42 individuals with early-stage Parkinson's disease, 

who completed a six-month trial of a device for remote symptom pro-

gression telemonitoring. For 16 voice measures, each treated as a main 

effect, ordinary least-squares regression is used to predict baseline motor 

impairment component score. ODA is used to maximize accuracy of the 

regression model when it is mapped to the diagnostic index, and results 

are compared with accuracy achieved by the novometric solution. 

 
 

Many diagnostic screening tests are employed to 

predict an individual’s disease status, measured 

on a graduated, ordered (“continuous”) scale of 

disease progression or severity of illness. The 

conventional modelling approach used in such 

analytic problems is least squares regression, in 

which the disease status score is regressed on an 

array of covariates treated as main effects. The 

predictive accuracy of such models is assessed 

by the R
2
 statistic and root mean squared error 

(RMSE). Such models assume the relationships 

between disease status and covariates are linear, 

and are unlikely to produce accurate predictions 

along the entire continuum of values.
1
  

Our recent series of papers demonstrated 

the use of ODA, CTA and novometric methods 

in analysis of observational data—and data from 

randomized controlled trials, in making causal 

inferences about treatment effects.
2-20 

Although 

we unequivocally advocate using novometry to 

identify maximum-accuracy (optimal) solutions, 

most research currently uses regression-based 

models to generate diagnostic models. Thus, for 

exposition, here we demonstrate the use of ODA 
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to maximize the accuracy of regression-based 

predictions mapped to an ordered diagnostic 

index, and compare the most accurate regression 

model possible with the novometric solution.   

  

Methods 

Data
21

 were obtained from 42 people with early-

stage Parkinson's disease, recruited to a 6-month 

trial of a remote telemonitoring symptom pro-

gression monitoring device. Data were individ-

ual’s scores on the Unified Parkinson’s Disease 

Rating Scale (UPDRS) which reflects both the 

presence and severity of symptoms (but not 

their underlying causes), as well as the predicted 

UPDRS score (PUPDRS) obtained by regression 

analysis using UPDRS as the dependent variable 

and the 16 voice measurement variables as 

main-effect independent variables. Only the 

baseline measurements were used in order to 

obviate concerns over autocorrelated data. 

The regression model ESS was assessed 

by treating PUPDRS as an ordered (“continuous”) 

attribute with 42 levels. Model accuracy was 

assessed by evaluating the fit between predicted 

and actual PUPDRS scores based on class intervals 

computed for integers.
22-23

 For exposition we 

also illustrate the effect of metric granularity on 

the ESS of the regression model by subjecting 

PUPDRS to an ordinal transformation into an at-

tribute having 7 levels (sequential blocks of 6 

ordered PUPDRS scores), 6 levels (sequential 

blocks of 7 ordered PUPDRS scores), and 2 levels 

(sequential blocks of 21 ordered PUPDRS scores). 

Novometric analysis was conducted 

treating UPDRS as an ordered class variable and 

PUPDRS as an ordered attribute: no directional 

hypothesis was specified.
2,17,24

 

Results 

The regression analysis modeling UPDRS 

scores as a simple linear function of PUPDRS 

scores was: UPDRS = 0.33 + 0.91* PUPDRS. The 

model intercept did not differ significantly from 

zero (t=0.03, P< 0.98), however the PUPDRS 

coefficient satisfied the generalized (per-

comparison) criterion for statistical significance 

(t=2.03, P<0.049). For this model, used in 

training (full sample) analysis, R
2
=0.094, 

indicating that UPDRS and PUPDRS scores shared 

9.4% of their variance (LOO analysis for 

regression modeling is not supported by most 

statistical software).  

Table 1 presents UPDRS and PUPDRS 

scores for all 42 observations, ordered from 

lowest to highest UPDRS Score. Assessed using 

one-unit class intervals the regression model 

correctly identified 5/42 (11.9%) observations. 

However, total percent accurate classification 

(PAC) is not normed against chance.
24-25

  

Next, scores were splined to create three 

lower-granularity ordinal scales. The 7-class 

scale breaks 42 sorted UPDRS scores into 7 

ordered groups (class levels) consisting of six 

scores apiece, and the 6-class scale breaks the 

42 sorted UPDRS scores into 6 ordered groups 

(class levels) of seven scores apiece. The third, 

lowest-possible-granularity scale creates a two-

class-level (“binary”) class variable by breaking 

the 42 sorted UPDRS scores into two ordered 

groups of 21 scores apiece. 

Consider first the 7-class spline. As seen 

in Table 1, the domain of the UPDRS values in 

Class 1 was 6 to 10.737, and the domain of the 

PUPDRS values was 16.05 to 24.48—therefore all 

of the observations in this UPDRS score seg-

ment (class level 1 of the 7-category class varia-

ble) were misclassified, so the model sensitivity 

for class level 1 was 0%. Similarly, all of the 

observations in classes 2, 3, 4, 6, and 7 were 

misclassified (sensitivity= 0%). In class level 5, 

observations 37, 33, 25, and 39 were correctly 

classified (class 5 sensitivity = 4/6 = 66.67%). 

For this model ESS= -5.56, or 5.56% worse than 

expected by chance. 

Consider next the 6-class spline. As seen 

in Table 1, the UPDRS domain in Class 1 was 6 

to 11.078, and the domain of PUPDRS values was 

16.05 to 24.48—all observations in this segment 

of the UPDRS score scale (class level 1 of the 
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Table 1 

Subject ID, UPDRS Score, and PUPDRS Score 

Computed using the Regression Model 

18 6 21.795298 

14 6.5651002 19.918833 

27 7.3449001 16.048582 

16 8.9390001 17.827396 

15 9.3273001 19.485985 

4 10.737 24.479759 

2 11.078 17.683687 

22 11.293 15.529094 

10 12 21.960381 

24 12.224 23.01252 

23 12.288 19.752378 

20 12.362 17.74873 

7 15.234 23.928732 

40 15.255 24.129951 

19 15.991 19.789335 

13 16.072001 24.171127 

32 16.487 20.696474 

9 17 21.093864 

11 17.466 20.493387 

8 18.093 21.049313 

38 18.256001 21.334663 

17 19.093 19.771648 

36 19.656 14.085366 

42 19.725 20.530104 

12 20.896 20.852905 

37 22.962 23.42835 

33 23.326 24.678873 

3 23.437 25.269072 

25 24.205999 24.396626 

39 25.033001 21.342693 

26 25.264 20.291403 

29 27.549 24.420732 

21 27.612 19.35153 

31 27.681 22.533978 

6 27.882999 22.682585 

1 28.198999 23.072725 

41 29.211 24.891562 

34 29.291 22.203928 

5 31 21.816959 

28 31.93 22.685665 

30 32.535 17.21484 

35 36.073002 20.675291 

6-category class variable) were misclassified, 

and the sensitivity of the model for class level 1 

was 0%. Similarly, all observations in class 

levels 2, 3, and 6 were misclassified. Four 

observations in class 4 (17, 42, 12, 37) were 

correctly classified: sensitivity for class 4= 

57.14%. And, two observations in class 5 (25, 

29) were correctly classified: sensitivity for 

class 4=28.57%. Here ESS= -2.9, or 2.9% worse 

than expected by chance. 

Finally, consider the two-class spline. 

Seen in Table 1, the domain of UPDRS values 

for the first 21 observations was 6 to 18.256, 

and the PUPDRS score of five observations (27, 

16, 2, 22, 20) fell in this domain and so were 

correctly classified (sensitivity for class 1 = 

23.81%). For class=2 (UPDRS domain = 19.093 

to 36.073) two observations (36, 30) were mis-

classified (sensitivity for class 2 = 90.48%): P< 

0.42, ESS=14.29—a relatively weak effect. 

Novometric Analysis 

Analysis identified eight statistically viable 

ODA models predicting UPDRS as a function 

of PUPDRS (both treated as ordered variables). 

Two identical models emerged with greatest 

ESS in LOO analysis—these were the only 

models having stable ESS in both total sample 

(training) and LOO (generalizability) analysis, 

involving the 15
th

 and 16
th

 largest UPDRS 

values in the sample. The model having the 

larger UPDRS value was selected on the basis 

of providing greatest statistical power.
24

 The 

“globally optimal” (GO) model was: 

     If PUPDRS<20.105 Predict UPDRS<16.072, 

and 

     If PUPDRS>20.105 Predict UPDRS>16.072. 

 For this sample, a UPDRS score of 

16.072 corresponds to normative z<-0.39, and a 

PUPDRS score of 20.105 corresponds to norma-

tive z<-0.44.
24

 This model correctly classified 9 

of 15 (60%) observations with UPDRS<16.072, 
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and 23 of 27 (85.2%) observations with UPDRS 

>16.072, in both training (P<0.027) and LOO 

(P<0.0039) analysis. For this model ESS=45.2, 

a moderate effect.
24,25

 This GO model is shown 

in Figure 1, in which both UPDRS (16.072) and 

PUPDRS (20.105) cut-points are plotted.  

Figure 1: Scatterplot of UPDRS and PUPDRS 

Scores, Illustrating Novometric and Regression 

Models 

 

As seen, 23 observations falling in the 

upper right-hand quadrant created by the inter-

section of these cut-point-based axes are cor-

rectly classified by the ODA model as having 

relatively high UPDRS scores; 4 observations in 

the upper left-hand quadrant are incorrectly 

classified as having relatively high UPDRS 

scores; 6 observations in the lower right-hand 

quadrant are incorrectly classified as having rel-

atively low UPDRS scores; and 9 observations 

in the lower left-hand quadrant are correctly 

classified as having relatively low UPDRS 

scores. 

Discussion 

 

For regression analysis only the 2-class-cate-

gory ordinal transformation of PUPDRS yielded a 

level of predictive accuracy (ESS=14.29) which 

exceeded what is expected by chance. However, 

this maximum-accuracy regression solution was 

not statistically reliable (P<0.41). In contrast, 

the novometric GO model identified a 2-class-

category solution yielding ESS=45.20 (the 

minimum criterion for a relatively strong effect 

is ESS=50), which was statistically significant 

in both total sample “training” (P<0.027) and 

LOO (P<0.0039) analysis.
24-25

 

In this paper we have demonstrated how 

ODA can be used to improve predictions of 

ordered (continuous) outcomes derived using 

conventional regression models. As seen, such 

models assume linearity over the entire contin-

uum of values, which can result in highly inac-

curate predictions at points along the continuum 

where the data are indeed non-linear. Given that 

most research currently uses regression-based 

models to generate diagnostic models, the issue 

of non-linearity is not trivial. As such we une-

quivocally advocate using ODA and CTA mod-

eling approaches to identify maximum-accuracy 

(optimal) solutions that inherently identify 

maximum-accuracy, reproducible solutions for 

linear as well as non-linear phenomena. 
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