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Abstract

This paper introduces the concept of instrumental variables (IVs) as a
means of providing an unbiased estimate of treatment effects in evaluating
disease management (DM) programme effectiveness. Model development
is described using zip codes as the IV. Three diabetes DM outcomes were
evaluated: annual diabetes costs, emergency department (ED) visits and
hospital days. Both ordinary least squares (OLS) and IV estimates showed
a significant treatment effect for diabetes costs (P =0.011) but neither
model produced a significant treatment effect for ED visits. However,
the IV estimate showed a significant treatment effect for hospital days
(P =0.006) whereas the OLS model did not. These results illustrate the util-
ity of IV estimation when the OLS model is sensitive to the confounding
effect of hidden bias.

Introduction

Disease management (DM), as defined by the Dis-
ease Management Association of America (2004) is a
system of coordinated interventions and communica-
tions for populations with conditions in which patient
self-care efforts are significant. DM programmes
were initially developed under the assumption that
by augmenting the traditional episodic medical care
system with services and support between doctor vis-
its, the overall cost of health care could be reduced.
For many chronic diseases, such as diabetes, asthma
and congestive heart failure, there is much opportu-
nity to improve the quality and consistency of care.
DM is meant to assist doctors and their patients in
identifying and closing those gaps in care.

DM programmes are typically evaluated using
observational study designs that are susceptible to
various biases that threaten the validity of study find-
ings (Linden et al. 2003). Most biases in DM are
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rooted in allowing individuals to self-select into the
programme. As a result, the evaluator is unable to
differentiate between a true programme effect and
the impact of unobserved differences in characteris-
tics between participants and non-participants that
may have led to the differences noted between study
groups in outcomes. Recently the propensity scoring
technique (Linden efal. 2005a), coupled with a
sensitivity analysis (Linden et al. 2005b) has been
suggested as a suitable means of estimating the mag-
nitude and mitigating the effects of these unobserved
characteristics in DM effectiveness studies.

This paper introduces the concept of instrumental
variables (IVs) as another approach to providing an
unbiased estimate of a DM programme treatment
effect. An IV model well suited to DM was devel-
oped by the authors and will be presented with dis-
cussion so that this technique can be easily replicated
in DM programme evaluations. For those organiza-
tions that purchase DM services, this paper will pro-
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vide a substantive background with which to discuss
the inclusion of I'Vs as an alternative evaluation pos-
sibility with their contracted vendors.

Instrumental variables

The concept of IV was borne out of the structural
equation modelling literature and has been an inte-
gral component in the field of econometrics since the
1920s (Wright 1928). In simple terms, an IV is a vari-
able (Z) that is correlated with the DM programme
intervention (X), but not associated with unobserved
confounders of programme outcome (Y). Therefore,
Z can only impact Y through X. A consequence of
this requirement is that Z not be correlated with any
unobserved covariates (U) that affect the relation-
ship between X and Y. Figure 1 shows these relation-
ships using a DM programme model. Note that all
elements below the line are components of any stan-
dard observational study design that may be biased
by the influence of U.The introduction of Z however,
provides an unbiased estimate of the causal effect of
X on Y (by remaining independent of U or Y, Z con-
trols the effect of U on the relationship of X and Y).
The logic for this is similar to that of a random con-
trolled trial (Linden ef al. 2005c). As indicated ear-
lier, the application of the IV is by way of a structural
equation model that uses a two-stage regression
analysis as follows (Angrist ef al. 1996):

Program Eligibility (Z)

Program Participation (X) ,/—\

Unobserved Covariates (U)

Outcome (Y) J

Figure 1 An illustration of the various elements of a
study design that incorporates the use of an
instrumental variable (IV). Z (the 1V) can impact Y only
through X. Hence, it is possible to estimate the causal
relationship of X to Y in relation to Z.

X =0 +0yXZ; +V; (1)
Y:B()+B1X)2vi+8i (2)

In equation (1), Z represents the IV that is used to
estimate X. X (the predicted value of X) is then
‘plugged-in’ to equation (2) instead of the actual X
variable. To bring more meaning to this set of equa-
tions, we assume that Z is the IV found to be a sig-
nificant predictor of who is likely to enrol in the DM
programme X. If the individual’s actual X was used
(indicating whether the individual actually enrolled
or not) the result may be confounded by selection
bias. However, using X given Z allows for an unbi-
ased estimate of the impact of programme enrolment
on an outcome (e.g. hospitalization, cost, etc.),
because Z predicts X in equation (1) but remains
independent of the X-Y relationship (here we
assume that Z is uncorrelated with the unobserved
covariates between X and Y). It is useful to think of
equation (1) as ‘purging’ X of potentially confound-
ing influences. Both of these equations may, and typ-
ically do, include other covariates.

Methods

The data used in this analysis represent a 1-year
experience of a diabetes DM programme. The pro-
gramme utilized an ‘opt-out’ enrolment process in
which all eligible individuals were automatically
included in the programme and those who chose not
to participate had to specifically request to be
excluded from the programme. In total, 1952 partic-
ipants were continuously enrolled in the programme
for the entire year. A control group was comprised of
the 582 remaining diabetics in the population who
chose not to participate in the programme but
remained insured with the health plan throughout
the entire programme period. The fact that the con-
trol group was only one-quarter the size of the pro-
gramme group is another interesting and realistic
phenomenon facing DM programme evaluators. As
DM is a population-based programme, it is likely that
fewer concurrent controls will be available for com-
parison or matching (as most eligible persons will
have enrolled in the programme). This will require
researchers to be thoughtful in their approach to
evaluating these programmes’ effectiveness.
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Zip codes as instrumental variables

Finding a variable in DM that meets the specific cri-
teria to be used as an I'V is almost an impossible task.
One must consider (i) what variable is predictive of
an individual’s enrolment in the DM programme, but
(ii) is not associated with any of the potential unob-
served covariates that influence that outcome. More-
over, given the limited data sets available (usually
only claims and enrolment files are accessible) there
are few variables to choose from.

We hypothesized that zip codes would make good
instruments because: (i) an individual living in a DM
covered service area would make them eligible for
programme participation (assuming they met all the
diagnosis and insurance benefit criteria), but not nec-
essarily ensure that they would enrol, and (ii) living
in a given zip code area may be independent of spe-
cific unobserved covariates (had we used a simple
variable indicating whether a person lived in a rural
or urban setting, we may have violated this assum-
ption, as it has been demonstrated that people living
in rural areas have less access to care and usually
have poorer health outcomes than those living in
urban centres) (Adams et al. 2001; Vargas et al. 2003;
Glover et al. 2004; Zulkowski & Coon 2004). To fur-
ther clarify the underlying assumptions of this model,
we assume two zip codes: Zip Code-1 (high pro-
gramme enrolment rate) and Zip Code-2 (low pro-
gramme enrolment rate). The natural experiment
that this instrument tries to model is how the differ-
ence in outcomes of these two zip codes is related to
the difference in participation rates. Although the
assumption is not testable, the hope is that within a
given zip code the correlation between unmeasured
confounders and programme participation is much
smaller than that relationship between zip codes.
Part of the motivation for using zip codes as an IV
is the belief that geographic proximity will make
participants and non-participants more similar on
unmeasured confounders. This is certainly true for
measured demographics. Therefore, the effect of zip
code on a given outcome (e.g. hospitalization) is indi-
rect, interceded by the probability of programme
enrolment.

Six hundred and sixty-seven unique five-digit zip
codes were identified for the given population. By
collapsing these based on the first three digits of the

Frequency of zip-code category

NYD XD 0A 2,009,980 :0:0,9:90N Do
\\\\O{Qe\\\\\q,q,q/q,q,q/
Zip-code identifier

Figure 2 Frequency of three-digit zip-code categories
used as instrumental variables.

zip code (which provided a contiguous expanded
geographical area), 71 new categories of zip-code
groups were established. Upon further scrutiny, it
was determined that a category called ‘other’ should
be created to include all zip codes with frequency
counts less than nine. Figure 2 shows the frequency of
the 25 three-digit zip-code category used as I'Vs.

First stage regression

A logistic regression equation (Cox 1970, 1972) was
constructed using 24 dummy variables to represent
the 25 three-digit zip-code categories. Other exoge-
nous variables included: age (years), gender
(1 =female, 0 = male) and a risk score (0.0-1.0). The
risk score is a predicted value derived from a logistic
regression model that includes covariates divided
into four areas including: demographic, utilization,
clinical and financial. The outcome variable was the
probability of a given individual enrolling in the pro-
gramme. This model was estimated based on the
actual participation status, denoted as a dichotomous
variable with 1 indicating programme participation
and 0 designated as control.

The overall model was significant (log ratio
x> =676.92, DF=24, P<0.0001). Additionally a
modified R* developed for logistic regression called
the McFadden R*=0.25, indicating that the model fit
the data adequately. Somers’ D and Goodman-
Kruskal gamma measures were 0.61 and 0.65, respec-
tively, indicating that the model has very good pre-
dictive ability.
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Table 1 A comparison of group characteristics based on
actual and predicted programme enrolment status

% Female
Group n Age (SE) (SE)
Actual
Control 582 51.4(0.22) 44 (1.0)
Programme 1952 51.8 (0.24) 45 (1.0
Predicted

Control 505
Programme 2029

52.0 (0.24) 44 (1.
51.6 (0.23) 45 (1.

Table 1 compares characteristics of the pro-
gramme participant and control groups, using the
actual enrolment status and the predicted enrolment
status (based on the first stage regression). As
shown, the predicted enrolment model compared
favourably to the actual enrolment data. While no
significant differences were noted in the age or
gender distributions, the predicted model tended to
slightly over-predict programme participation. These
results satisfy the assumption that Z must be associ-
ated with X.

Second stage regression

Ordinary least squares (OLS) regression models were
constructed to estimate the impact of programme par-
ticipation on three different outcome variables: (i)
programme year hospital days, (ii) programme year
emergency department (ED) visits and (iii) pro-
gramme year diabetes-related medical costs (exclud-
ing pharmacy). Independent variables included those
exogenous variables from the first stage regression:
age, gender, risk score, as well as the ‘plug-in’ or pre-
dicted value of programme participation.

Each model was estimated twice, once using the
actual programme participation status, and a second
time using the predicted participation status from the
first stage regression. Running OLS twice, using the
predicted value from the first stage as a plug-in vari-
able in the second stage results in incorrect estima-
tions of the residual sum of squares and their
standard errors. Therefore, it is important that these
analyses be performed using a two-stage least
squares (2SLS) model that is available in most statis-
tical and econometric software packages.

Results

Table 2 provides the OLS and IV estimates for the
programme effect on the three outcome variables
(cost, ED visits and hospital days).

Programme participation (denoted as ‘Group’)
appeared to have a significant effect on costs
(P=0.011 and P =0.012, in the OLS and IV models
respectively). While the level of significance was sim-
ilar in both models the magnitude of the cost reduc-
tion in the IV was nearly double that in the OLS
($2328 vs. $1288, for the IV and OLS respectively). As
expected, the risk score also appeared to significantly
impact costs (P < 0.0001 for both OLS and IV mod-
els). Somewhat surprising however, was the magni-
tude of the effect. A one-unit increase in the risk score
was associated with an increase of nearly $36 000 per
diabetic member during the programme year.

There appeared to be no significant programme
effect on ED visits, under either model estimation
(P =0.664 and P =0.594, for the OLS and IV models
respectively). However, the coefficients changed
directions from indicating a 0.003 increase in ED visits
under the OLS to a 0.007 decrease in ED visits under
the IV. Also of interest, age was the only covariate
having a significant effect on ED visits (P < 0.0001).

Programme participation did not appear to impact
hospital stays under the OLS model (P =0.081);
however, participation was shown to affect hospital
stays significantly in the IV estimate (P = 0.006). The
magnitude in the reduction of hospital stays also
greatly differed between the models as illustrated by
the coefficients (-0.231 vs. 0.678, for the OLS and IV
respectively. Risk scores were significant predictors
of hospital days (P = 0.0001), with a one-unit increase
in score associated with roughly 5.5 extra hospital
days per year.

The adjusted R? for the total cost model was 9.4%
and for the hospital stays model was 3.4-3.0% (OLS
and IV respectively). These values are similar to what
is generally seen in the health services research liter-
ature. All model parameters were tested for co-
linearity but none was detected.

To test the assumption that the IV estimates were
not directly associated with any of the three outcome
measures, residuals from each equation were
regressed on the zip code instruments. No direct rela-
tionships were evident for any model (P =0.127,
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Table 2 Ordinary least squares (OLS) and instrumental variable (IV) estimates of the disease management programme
effect on three outcomes: programme year total diabetes-related costs, programme year emergency department (ED)
visits and programme year hospital days

OLS v
Significance Significance
Variable Coefficient SE (P) Coefficient SE (P)
Total diabetes costs
Intercept 2 329.966 1054.468 0.027 3101.28 1204.09 0.010
Group -1288.412 503.856 0.011 -2328.93 930.52 0.012
Female -559.134 428.535 0.192 —543.99 429.05 0.205
Risk score 35886.787  2284.228 <0.0001 35 652.06 2292.95 <0.0001
Age 25.878 18.235 0.156 26.71 18.26 0.144
Adjusted R? 0.095 0.094
Hausman F-test 0.183
ED visits
Intercept 0.070 0.015 <0.0001 0.077 0.016  <0.0001
Group 0.003 0.007 0.664 -0.007 0.013 0.594
Female 0.001 0.006 0.915 0.0008 0.006 0.896
Risk score 0.029 0.032 0.358 0.027 0.032 0.353
Age -0.001 0.000 <0.0001 —-0.001 0.000 <0.0001
Adjusted R? 0.006 0.006
Hausman F-test 0.360
Hospital days
Intercept 0.325 0.277 0.241 0.656 0.317 0.038
Group -0.231 0.132 0.081 -0.678 0.245 0.006
Female -0.110 0.113 0.329 -0.104 0.113 0.359
Risk score 5.581 0.600 <0.0001 5.480 0.604  <0.0001
Age 0.002 0.005 0.670 0.002 0.005 0.618
Adjusted R? 0.034 0.030
Hausman F-test 0.029

P =0.812 and P =0.209, for the cost, ED and hospital
day models respectively).

The Hausman F-test (Hausman 1978) was per-
formed on all three outcome models to assess
whether the results obtained between the OLS and
IV estimates were significantly different. If not, then
typically the OLS model becomes the default as the
estimates are more efficient in terms of coefficients
and SE. In both the cost and ED visit models, the
Hausman test failed to find differences between
the OLS and IV models. However, the hospital days
model showed a significant difference (P =0.029)
between the OLS and IV estimates.

Discussion

The results of these analyses provide excellent exam-
ples of the various possible outcomes of using the IV
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method in comparison to the standard OLS model to
assess treatment effect. In relation to annual costs,
both the OLS and IV models showed a significant
treatment effect of programme participation. In this
case, one might conclude that hidden bias was not a
factor that influenced costs, as the IV method did not
add much to results. The magnitude of the cost sav-
ings estimate in the IV method was nearly double
that in the OLS. However, the Hausman test indi-
cated that the estimate between the two models was
not significantly different, and thus we default to the
results produced by the OLS model.

In the case of ED visits, the IV estimate did not
improve the results of the OLS. In both cases pro-
gramme participation did not impact ED visit rates
significantly. However, an interesting finding was that
in the OLS model, being a programme participant
increased ED visits by 0.003 while the IV model
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showed a more intuitive result of a decrease in ED
visits by 0.007 associated with programme participa-
tion. While these results were not statistically sig-
nificant, the direction of change noted in the IV
estimate would lead us to believe that this model was
more appropriate than the OLS estimation. How-
ever, since the Hausman test showed that there was
no statistically significant difference between the
model estimates, the determination of which model
should be used is left to the judgment of the analyst.
In this scenario, the decrease in ED visits estimated
by the IV model makes intuitive sense.

In the case of yearly hospital days, the IV model
showed a significant treatment effect while the OLS
model did not. It appears that there may have been
unobserved biases impacting outcomes in the OLS
model that are controlled using the unbiased esti-
mate of the IV model.

As expected, the risk score was a significant con-
tributor to both the cost and hospital stay models.
The predictive model incorporates up to 150 inde-
pendent variables as a means of explaining the fol-
lowing year’s cost. As hospital stays are the primary
drivers of cost, we would expect to see this variable
reach significance level in these two models. How-
ever, it was not a significant predictor of ED visits.
This finding has been noted in other studies as well
(Linden et al. 2005a, 2005b). The Hausman test was
significant (P =0.029) and thereby supported the
other differences noted between the IV and OLS
estimates for this model.

While not performed in the current study, sensitiv-
ity analyses can be provided as a means of estimating
bounds around X. For a comprehensive discussion on
estimating bounds, the reader is referred to studies
by Manski (1990), by Heckman & Vytlacil (1999) and
by Linden et al. (2005c).

Limitations in the use of the IV method

While the IV method presents an excellent alterna-
tive, providing an unbiased estimate of DM pro-
gramme effect, there are several limitations that may
impede its widespread adoption in DM programme
evaluation. First, as suggested earlier, finding suitable
IVs is problematic in DM because of the limited data
available for analysis and the general structure of
DM programmes. For example, McClellan et al.

(1994) in one of the few health care-related studies
using I'Vs, used patients’ differential distance to the
hospital as an IV to assess whether intensive treat-
ment after acute myocardial infarction reduces mor-
tality. A measure of distance would not work as an IV
in DM because most programme interventions rely
on telephonic, Internet or postal-based communica-
tions with participants. However, in this study zip
codes were used successfully as an IV. That said,
zip codes may not be generalizable to other
programmes.

Second, IV estimates will only work if certain
assumptions are met. However, some of these
assumptions do not lend themselves to testing and
thus it may never be known if those assumptions
were violated. For example, the assumption that Z is
not correlated with unobserved covariates U cannot
be definitively proven. Another assumption is that
one person’s outcome is not related to another per-
son’s treatment assignment (Rubin 1990). Theoreti-
cally this assumption could be violated if two
members of a given household had the same diag-
noses (e.g. diabetes) but one was participating in the
programme while the second was not. It is possible
that the non-participant would change behaviour
that would impact outcomes based on their observa-
tion of the intervention that the other house member
was receiving.

Most candidate IVs are subject to some criticism.
The criticism here would be that somehow patients
with higher or lower levels of unmeasured severity
choose to live in certain zip codes and that this pat-
tern would not be explained by their risk scores. But
the possibility that unmeasured severity is related
to programme participation in a way that is not
explained by risk scores is a much more immediate
threat to the validity of other methods. We suggest
that IV method with whatever instruments available
can provide some insight into these potential sources
of bias even if IVs are less than perfect. There has
been an evolution in the interpretation of IV model
in the econometric literature. One emerging way to
think about an I'V like ours is that it is the average of
a large collection of small studies comparing the
results from one zip code to another.

In the absence of randomization there are always
potential unmeasured confounders that could inval-
idate an instrument. However, as assumptions made
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in I'V cannot be tested, there is typically no empirical
information to refute them. Criticism of the IV
method is usually a criticism aimed at the use of OLS
regression in general. However, even a potentially
flawed instrument is worth considering if it is
thought to be better than naive analyses with known
biases.

Conclusions

This paper introduced the concept of IVs as another
approach to providing an unbiased estimate of a DM
programme treatment effect. This method uses an
IV model well-suited to DM using zip codes. This
method is particularly suitable to DM programme
analysis (where the use of randomized control groups
is generally not practical) because IVs may reduce
many of the biases typically inherent to observational
studies, most notably selection bias. An important
fact to keep in mind when using the IV method is that
there are several assumptions that must be met in
order for this method to produce valid estimates of a
treatment effect. Therefore, any discussion on the
results achieved through the analysis must describe
how the assumptions were tested and if any viola-
tions were noted. Nonetheless, because of its simplic-
ity and utility, IV estimates should be considered as
an alternative procedure for use with current non-
experimental designs in evaluating DM programme
effectiveness.
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