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Abstract

Health management programmes are generally evaluated as point treatment studies in
which only a baseline and outcome measurement are used in the analysis, even when
multiple observations for each individual are available. By summarizing observations into
two distinct measurements the evaluator loses any ability to discern patterns of change in
the outcome variable over time in relation to the intervention. There are several statistical
models available to evaluate longitudinal data that are typically regression-like in form and
designed to adjust for clustering at the individual level. Most evaluators of longitudinal
studies tend to adjust for the effect of time-dependent confounding by including these
covariates as independent variables in the model. However, this standard adjustment
approach is likely to provide biased estimates. In this paper we describe the application of
the propensity score-based weighting technique to longitudinal data to estimate the effect
of treatment on an outcome. This method reweights each treatment pattern to represent the
entire population at each time point and provides an unbiased treatment effect. We illustrate
the technique using data from a disease management programme and demonstrate its
superiority over standard analytical adjustments in correcting for time-dependent con-
founding for each time period under study.

Introduction

Health management programmes are generally evaluated as point
treatment studies in which only a baseline and outcome measure-
ment are used in the analysis. For some types of data, such as
surveys, it may be that only two measurements are available
because of the prohibitive cost and resources needed to collect
observations more frequently. In other instances, while more peri-
odic data may actually be available (such as medical claims data or
biometric feeds from remote telemonitoring devices), the evaluator
may nevertheless choose to aggregate the data into pre- and post-
intervention observations, possibly to simplify the analysis or
make the results easier to understand for non-researchers.

While it is perfectly valid to summarize multiple observations
into two distinct measurements for the purpose of evaluation, the
evaluator loses any ability to discern patterns of change in the
outcome variable over time in relation to the intervention. For
researchers and programme administrators alike, establishing the
temporal relationship between treatment and outcome may be as
important as determining whether there is a programme effect at
all.

There are several statistical models available to evaluate longi-
tudinal data and they generally share some basic commonalities:
these models are typically regression-like in form [e.g. random
effects, fixed effects, mixed effects, general estimating equations
(GEE)], and they are designed to adjust for clustering at the indi-
vidual level (e.g. outcomes measured repeatedly within individuals
will generally be highly correlated and may produce inaccurate
estimates using standard regression models).

Longitudinal data from health management interventions are
particularly susceptible to the influence of time-dependent con-
founders and therefore, any of the aforementioned models must
adjust for this bias accordingly. A time-dependent confounder is a
variable that obscures the true relationship between treatment and
outcome if a past level of that variable independently predicts both
the exposure to treatment and the outcome. As an example, per-
ceived health status has been shown to predict mortality [1], but
it is likely to predict participation in a health management
programme if a low score is used as criteria for enrolment. As
illustrated in Fig. 1, health status confounds the effect of the
programme on mortality because health status predicts both pro-
gramme participation and mortality. Additionally, an effective
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Figure 1 lllustration of the time-dependent relationship between health status, unmeasured sources of bias, programme participation and the

outcome — mortality. Adapted from Robins et al. [2]

intervention will impact future measurements of health status that
in turn may impact whether that person will continue receiving the
intervention or get discharged from the programme. In this situa-
tion, health status is confounded by prior treatment.

Most evaluators of longitudinal studies tend to adjust for the
effect of confounding by including these covariates as independent
variables in the model (as they would in point treatment studies
using standard regression models). However, this standard adjust-
ment approach has been shown to provide biased estimates [2].

A recently developed modelling approach for longitudinal
observational data generally referred to as marginal structural
models (MSM) adjusts for time-dependent confounding as well as
other biases present in non-randomized studies using a time-
updated propensity score-based weighting procedure [2,3]. The
weight is based on the conditional probability of an individual
receiving his/her own treatment at each time point, and is called
the ‘inverse probability of treatment weight’ (IPTW) [2,3]. This
weighting mechanism weights the treated participants to the popu-
lation from where they were drawn at each time point, thereby
allowing unbiased population estimates to be calculated at each
period or across all time points in aggregate.

This paper presents a non-technical introduction to the IPTW
procedure for evaluating longitudinal data. It builds on our accom-
panying paper in the current issue [4], which described the weight-
ing procedure for use in point treatment studies. For the purpose of
illustration, data from a chronic disease management programme
will be used with medical costs as the primary outcome.

Inverse probability of treatment
weighting in longitudinal data

As described in Linden and Adams [4], Robins [3] and Robins,
Hernan and Brumback [2] have applied the weighting concept
developed in the survey sciences to adjust for imbalances in sam-
pling pools [5] to the study of treatment effects in observational
health care studies, using the estimated propensity score to repre-
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sent the conditional probability of treatment [6,7]. Treated subjects
are given a weight of 1/(propensity score) and non-treated subjects
are given a weight of 1/(1 — propensity score) [2].

The IPTW mechanism can be thought of as creating a
pseudopopulation comprised of ‘copies’ of the original subjects
who account not only for themselves but for subjects with similar
characteristics who received the alternate exposure [8]. More spe-
cifically, a programme participant with a low estimated propensity
score will contribute many more copies of him/herself to the
pseudopopulation than a participant with a high estimated propen-
sity score (e.g. a programme participant with a propensity score of
0.01 will contribute 100 copies while a participant with a propen-
sity score of 1.0 will contribute only one copy). The interpretation
of the weighting formula for non-participants is analogous [4].

In point treatment studies, the IPTW allows us to view the
pseudopopulation as one in which all individuals are considered
conditionally exchangeable by ensuring that balance is achieved
between treated and non-treated groups on pre-intervention char-
acteristics [9]. In contrast, the IPTW in longitudinal studies is
updated at each time point, ensuring that balance is achieved not
only at baseline, but at each observation up to the most recent
period. As such, the IPTW allows the researcher to control for
effects of time-dependent confounders as well as many other
potential biases that may have occurred after the initial baseline
measurement was taken (see Fig. 1).

The first step in calculating the IPTW in longitudinal data is to
estimate the propensity score for each person at each period. More
specifically, pooled logistic regression is used to estimate the prob-
ability of assignment to the treatment group conditional on cova-
riates from the current and past periods. Table 1 provides an
example of such a model in which there are three observation
periods. The first measurement period represents the baseline, and
therefore, the covariates include only those variables measured
prior to the start of the intervention. The second measurement is
taken at some point after the intervention commences and thus the
model includes covariates from the prior measurement (period 1)
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Table 1 A hypothetical propensity score model for a programme with
three measurement periods

Measurement period Covariates

1 (Period 1)

2 (Periods 1 and 2) + outcome (period 1)
3 (Periods 1, 2 and 3) + outcome

(periods 1 and 2)

The treatment variable from the prior period could also be added into the
current measurement period model, but that may be more important for
programmes in which treatment is not constant.

and from the current period (period 2). The outcome variable
measured at the prior period can be added to the model as well;
however, care must be taken to ensure that the outcome from the
current period is not included in the propensity score model, as it
will be used in the outcome model at a later stage of analysis.
Additionally, prior treatment status can also be added as a covari-
ate to capture the persistency of treatment. The third measurement
(and any subsequent period model) is analogous to period 2.
Boosted logistic regression [10] is worth considering as an alter-
native to the standard logistic model in estimating the propensity
score. Regression boosting, commonly referred to as multiple
additive regression trees, is a general, automated, data-adaptive
modelling algorithm that can estimate the non-linear relationship
between the outcome variable (in this case, treatment assignment)
and a large number of covariates including multiple level interac-
tion terms resulting in greater accuracy over standard linear
models [11].

Once the propensity score is estimated for each person period,
the IPTW weights can then be generated for treated and non-
treated individuals. In studies where the propensity score distribu-
tion has large variability (possibly because of some covariates
being highly correlated with treatment), it is possible that some
treatment patterns will have extremely large weights. In this situ-
ation, Robins et al. [2] and Hernén et al. [12] recommend replac-
ing the IPTW with stabilized weights to reduce this variability and
ensure the estimated treatment effect remains unbiased. Generally,
a review of summary statistics after generating the IPTW weights
will help determine if stabilized weights are necessary. A user-
written program for Stata called propwt (available from A. Linden)
generates both stabilized and unstabilized IPTW weights (in addi-
tion to generating several other potentially useful weights that can
be used in either point treatment or longitudinal studies).

Upon completion of this step, each individual will have a weight
for each period in which they have data, accounting not only for
themselves but for subjects with similar characteristics who
received the alternate exposure to treatment up to that period. In
effect, this process decouples the relationship between a person’s
probability of receiving the intervention and their time-updated
covariate mix.

Model estimation using inverse
probability of treatment weight in
longitudinal analyses

Unbiased treatment effects can be estimated by fitting the appro-
priate statistical model using the IPTW as the specified weight
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(e.g. in the Stata software package one would specify the IPTW as
either an analytical weight or sampling weight). Like any other
outcome variable, the choice of model depends on the distribution
of the outcome variable. This can be logistic regression for
dichotomous variables, ordinary least squares for continuous vari-
ables, Poisson for rates or rare events, and pooled logistic regres-
sion for survival or censored cases [13]. Some researchers prefer
the use of generalized linear modelling for its flexible distribu-
tional assumptions [14]. Regardless of which of these traditional
regression models are used, standard errors must be adjusted to
correct for within subject correlation by either clustering at the
individual level or using robust standard errors [15]. Conversely,
evaluators can choose from among more complex models specifi-
cally designed to account for within subject correlation in longi-
tudinal data, such as GEE, random effects, fixed effects or mixed
effects models (readers are referred to Rabe-Hesketh and Skrondal
[16] and Fitzmaurice et al. [17] for a comprehensive discussion on
these models). Standard errors must also account for the variability
in weights from the IPTW.

As the IPTW implicitly incorporates covariates into the statis-
tical model by way of the propensity score, it is generally sufficient
to include only the treatment variable into the structural compo-
nent of the regression (e.g. the right side). However, covariates
may be added if reviewing their contribution to the model is
important. As of yet ‘doubly robust estimators’ [18-20] that
require the use of IPTW and covariate within the same regression
model, do not appear to have been applied to longitudinal models.
In point treatment studies using IPTW, an estimator is doubly
robust if it remains consistent when either model (propensity score
or outcomes regression) is correctly specified. Therefore, an evalu-
ator is given two chances, instead of only one, to make a valid
inference. Future efforts should focus on extending this technique
to longitudinal data.

Example of the inverse probability of
treatment weight applied to a
longitudinal analysis of a health
management programme

For the purpose of illustrating how the MSM/IPTW concept can be
applied to longitudinal analyses we use data from a health man-
agement programme that invites individuals with chronic condi-
tions to enrol in a nursing intervention intended to improve clinical
indices of care while reducing medical costs. The data consist of
24 monthly observations for 155 programme participants and 7713
non-participants (for a total of 188 832 observations).

The first 12 months of data representing the pre-programme
baseline period are presented in Table 2. As would be expected in
a non-randomized programme, participants were significantly
older, sicker and more costly than non-participants. In addition to
this obvious selection bias, one can easily envision several poten-
tial sources of confounding when reviewing the data in a longitu-
dinal context. For example, individuals with a chronic illness who
are not getting their prescriptions filled may be more likely to be
targeted for programme enrolment. To get the prescription, these
patients would have to see their doctor, which in turn may reduce
the likelihood of the patient presenting to the emergency depart-
ment for an acute exacerbation of the condition, which may further
result in a hospital admission and ultimately incurring high costs.
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Table 2 Baseline (12 months) characteristics of programme participants and non-participants

Variable* Participants Non-participants P-value'
N 155 7713

Age 56.45 (9.2) 46.59 (11.0) <0.0001
Female (%) 45.81 53.26 0.06
Congestive heart failure (%) 9.68 0.65 <0.0001
Coronary heart disease (%) 30.32 3.16 <0.0001
Chronic obstructive pulmonary disease (%) 14.19 4.36 <0.0001
Diabetes (%) 67.10 9.87 <0.0001
Hospital admissions 0.21 (0.5) 0.04 (0.3) <0.0001
Emergency department visits 0.43 (1.1) 0.12 (0.4) <0.0001
Doctor office visits 9.65 (6.3) 3.81 (4.4) <0.0001
Prescriptions 46.45 (28.4) 11.62 (16.4) <0.0001
Total costs $13 522 (17 585) $3107 (8857) <0.0001

*Unless otherwise noted, variables presented are means and standard errors.
"P-values for means were derived using t-tests for independent samples and P-values for percentages were derived using t-test for proportions.

In this scenario, the patient’s level of compliance with the medi-
cation regimen, or their ability to schedule a doctor visit, or their
preference for using the emergency department as their primary
source of care could all confound the relationship between pro-
gramme enrolment and costs.

In generating the propensity scores for each person period, we
followed the logic described in Table 1. The propensity score for
the baseline was estimated using all the variables listed in Table 2
as covariates and aggregated into one annual block (rather than 12
monthly increments). Similarly, the propensity score for the first
programme month was estimated using the baseline values and
those covariates of the first month (excluding current period costs).
All subsequent person period propensity scores were estimated in
a similar fashion. At the end of this process step, a total of 13
propensity scores were estimated per individual (one baseline and
12 programme periods).

Raw and stabilized IPTW weights were then generated for each
person period using the propwt user-written program described
earlier. A review of the summary statistics indicated that stabilizing
the weights reduced the variability around the mean to a large
degree (the mean and standard deviation for the raw IPTW was
1.42 and 18.05, while the mean and standard deviation for the
stabilized IPTW was 0.99 and 1.96, respectively). This suggested
that the stabilized weights would be preferred over raw weights
when estimating the outcome model in the next stage of analysis.

We estimated the outcome model using generalized linear mod-
elling in Stata (version 10.1) using the IPTW as the weight and
clustering on the individual to provide robust standard errors
(‘clustered robust’ option in Stata). To simplify the exposition,
costs were regressed on the treatment covariate only and the sta-
bilized weight was employed as the analytical weight (‘aweight’
option in Stata). Figure 2 illustrates the difference in monthly costs
for participants over non-participants using a naive estimate (costs
regressed on the treatment variable without the weights to adjust
for selection bias or time-dependent confounding). As shown, the
monthly medical costs of programme participants ranges are sig-
nificantly higher than non-participants in every month of the pro-
gramme, with point estimates (representing the mean difference
between the groups) ranging from $604 to $1274 over the
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Figure 2 Naive estimate of programme effect on costs. Values and
95% Cls represent the treated group’s monthly costs relative to the
non-treated comparison group (red line at zero).

12-month period. The naive estimate for the aggregate 12-month
period was $1204 higher costs for the treatment group per month
(95% CI=$927.9, $1119.9).

Figure 3 illustrates the difference in monthly costs for partici-
pants over non-participants using the IPTW weights in the model
estimation. As shown, once adjustments are made to control for
selection bias and time-dependent confounding, the participants’
group no longer have statistically higher medical costs than non-
participants (monthly point estimates for the difference between
groups range from —$761 to $847). The IPTW adjusted estimate
for the aggregate 12-month period was $98 higher costs for the
treatment group per month (95% CI=-$198.6, $394.2). These
estimates were consistent when the process was replicated in the
SAS statistical software package (SAS Institute, Inc., Cary, NC,
USA) using ‘Proc Genmod’ with an independence correlation
matrix and clustering on the individual (in this context, the ‘Proc
Genmod’ statement produces GEE estimates).
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Figure 3 Weighted estimates of programme effect on costs. Values
and 95% Cls represent the treated group’s monthly costs relative to the
non-treated comparison group (red line at zero).

For comparison purposes, we re-estimated the model using
standard regression techniques. Here, costs were regressed on the
treatment variable and all other covariates for the current and past
periods (utilizing the same variables as those used to produce the
IPTW for the weighted model). The standard model estimate was
—$168.7 per month (95% CI =-$276.3, —$61.1) for the treatment
group, suggesting that the participant group exhibited a small but
statistically significant monthly drop in costs relative to the non-
participant group.

In summary, upon controlling for selection bias and time-
dependent confounding, medical costs for participants in a chronic
disease management programme were no higher than non-
participants, whereas standard regression techniques provided
biased estimates indicating a slight monthly decrease in medical
costs for programme participants.

Limitations of the inverse probability of
treatment weight technique in
longitudinal data

As with any evaluation of observational data, the foremost limita-
tion is that we presume that all biases and confounding have been
adjusted for in the model, an assumption that cannot truly be tested
outside of a randomized study. One limitation specific to inverse
probability weighting is that propensity scores for programme
participants must be different from zero. In effect, no treatment
effect can be estimated for people who have no probability of
receiving the treatment [4]. A related problem will arise if every-
one in the population will either receive or not receive the inter-
vention at a specific time point. From a mathematical perspective,
logistic regression cannot produce estimates if all values for the
outcome are identical, thus the propensity score cannot be
estimated.

Conclusion

In this paper we have described the application of the marginal
structural modelling weighting technique to longitudinal data to
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estimate the effect of treatment on an outcome. This method
reweights each treatment pattern to represent the entire population
at each time point and provides an unbiased treatment effect. As
illustrated in the example provided, the IPTW technique is supe-
rior to standard analytical adjustments because of its ability to
correct for time-dependent confounding at each time period under
study. This provides us with confidence that the groups remain
essentially equivalent (assuming there is no residual confounding),
thereby allowing us to make causal inferences about treatment
effects. Given the robustness of this analytical technique, the
IPTW should be considered as an alternative procedure for use
with longitudinal observational data to evaluate health manage-
ment programme effectiveness.
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